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Critical phase of a magnetic hard hexagon model on a triangular lattice

Yasushi Honda and Tsuyoshi Horiguchi
Department of Computer and Mathematical Sciences, Graduate School of Information Sciences, Tohoku University,

Sendai 980-77, Japan
~Received 15 July 1996!

We introduce a magnetic hard hexagon model with two-body restrictions for configurations of hard hexa-
gons and investigate its critical behavior by using Monte Carlo simulations and a finite size scaling method for
discrete values of activity. It turns out that the restrictions bring about a critical phase which the usual hard
hexagon model does not have. An upper and a lower critical value of the discrete activity for the critical phase
of the proposed model are estimated as 4 and 6, respectively.@S1063-651X~97!04601-1#

PACS number~s!: 64.60.2i, 75.10.2b
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I. INTRODUCTION

Critical behavior of the hard hexagon model on a triang
lar lattice is well known through its exact solution by usin
the corner transfer matrix@1#. Below a critical value of the
activity z;11, the system is in the disordered phase. The
fore, a correlation function between hard hexagons dec
exponentially there@2#. Above the critical value of the activ
ity, the hexagons on the lattice condense and make an
dered configuration. The degeneracy of the ordered confi
ration is triplefold and the universality class of the critic
point is the same as that of the three-state Potts model@1,3#.
The fact that the hexagons are hard means that there
restriction between the nearest-neighbor sites, such that
two hexagons cannot occupy two neighboring sites simu
neously on the triangular lattice. This property of the ha
hexagon model can be regarded as the nearest-neighbo
clusion. Adding to the nearest-neighbor exclusion, a ne
nearest-neighbor exclusion causes fourfold degeneracy in
ground state. Todo and Suzuki@4# claimed that the hard
hexagon model with the next-nearest-neighbor exclusion
longs to the same universality class as that of the four-s
Potts model by means of the numerical study by using
phenomenological renormalization group method and
conformal invariance.

Recently, it was found that an antiferromagnetic spinS
Ising model on the triangular lattice has a relation with t
hard hexagon model with many restrictions for configu
tions of hexagons@6#. The phase transition as a function
S in the ground state of the spin-S Ising model was studied
by using a mapping from the ground state degeneracy of
system at zero temperature to a partition function of a sp
1/2 system at a pseudotemperature@5,6#; the mapped system
is called aD model. The originalS51/2 Ising model was
exactly solved and it is well known that the system is critic
with h51/2 at zero temperature@7,8#. Nagai et al. @9#
showed that the critical indexh decreases from 1/2 fo
S51/2 when the spinS increases fromS51/2. It has been
clarified thath becomes zero atS57/2 discontinuously@6#.
This behavior ofh suggests an appearance of a partial lo
range order for the system withS>7/2; it was shown explic-
itly for S5` @10#. We remind the reader that theD model is
the hard hexagon model with many kinds of restrictions@6#.
In contrast with the usual hard hexagon model which d
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not have any extra restrictions but only the nearest-neigh
repulsion, theD model is critical for 1/2<S<3 @6#.

The purpose of the present paper is to introduce a h
hexagon model; we call it a magnetic hard hexagon mo
The magnetic hard hexagon model with up to the thi
nearest-neighbor repulsions is investigated by Monte C
simulations and a finite size scaling for evaluation ofh. We
find that the hard hexagon model has an ordered phas
critical phase, and the disordered phase. We discuss a
tion of the hard hexagon model with the spin-S Ising model
on the antiferromagnetic triangular lattice.

In Sec. II, we introduce the magnetic hard hexagon mo
with exclusions up to the third-nearest-neighbor sites w
relation to the spin-S Ising model on the triangular lattice. In
Sec. III, we show our results about a phase diagram of
model and discuss these results. Concluding remarks
given in Sec. IV.

II. MAGNETIC HARD HEXAGON MODEL
WITH RESTRICTIONS

Let us introduce a magnetic hard hexagon model whic
related to a representation of the ground state degenerac
the spin-S Ising model on an antiferromagnetic triangul
lattice ~ATL !. The ‘‘occupation number’’ of magnetic har
hexagons is denoted byz i at a sitei on the triangular lattice
L; z i takes on$21,0,11%. If the site i is occupied by an
‘‘up magnetic hard hexagon’’ or by a ‘‘down magnetic ha
hexagon,’’ then we assign themz i511 and21, respec-
tively. If the site i is empty, then we setz i50.

The ground partition function of the system is written a

ZRMHH5(
$z l %

z( i51
N uz i u)̂

i , j &
~12uz i uuz j u!

3 )
^ i ,k&8

1
2 ~11z izk! )

^ i ,l &9

1
2 ~12z iz l !, ~1!

where N5uLu, and the products witĥ i , j &, ^ i ,k&8, and
^ i ,l &9 are taken over the nearest-neighbor pairs of sites,
next-nearest-neighbor pairs of sites, and third-near
neighbor pairs of sites, respectively. We explain below
194 © 1997 The American Physical Society
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55 195CRITICAL PHASE OF A MAGNETIC HARD HEXAGON . . .
relation of ZRMHH with the ground state degeneracy of t
spin-S Ising model on the ATL. In this relation, the activit
denoted byz is equal to 2S.

The Hamiltonian of the spin-S Ising model on the ATL is
written as

H$S%5J(
^ i , j &

SiSj , ~2!

whereJ (.0) is the interaction constant between neare
neighbor sites denoted bŷi , j & and Si is a spin variable
which takes a value on$2S,2S11, . . . ,S21,S%. It has
been shown that the ground state degeneracy of this sy
is equivalent to a partition function of a spin-1/2 Ising mod
as follows@5,6#:

Z5 (
$s l uE$s l %/L

252J/4%

exp$ ln~2S!K$s l%%, ~3!

where the summation for spin configurations$s l% is taken
over the ground-state configurations of the spin-1/2 Is
model on the ATL withs lP$21/2,11/2%: the energy of the
system,E$s l%/L

2, has to be2J/4. We recall that this is the
partition function of theD model @5#. The linear size of the
system is denoted byL. K$s l% denotes the total number o
free spins and is expressed as follows:

K$s l%5 (
iPL

ki$s l%, ~4!

ki$s l%[ )
jPC1~ i !

S 1212s is j D )
jPC2~ i !

S 1222s is j D , ~5!

where in Eq.~4! the summation is over the set of sites in t
lattice L and in Eq.~5! C1( i ) andC2( i ) are sets of sites
each of them composed of three sites encircling the
i5(x,y) as shown in Fig. 1. When right bonds shown
thick lines are arranged in such a way given in Fig. 2,
value of the functionki$s l% becomes 1; this means that
hexagon occupies the sitei5(x,y). In this situation, the site
(x11,y) cannot be occupied by another hexagon, beca
the value ofs (x,y)s (x11,y) on the bond (x,y)2(x11,y) is

FIG. 1. Set of sites,C1( i ) andC2( i ), encircling the sitei . These
appear in Eq.~5! for evaluation of the occupation numberki$s l% of
a hexagon.
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21/4 and hence the value ofk(x11,y)$s l% is 0. One cannot
put another hexagon on the site (x,y21) because the value
s (x,y)s (x,y21) is 11/4. For the same reasons as those for
sites (x11,y) and (x,y21) explained above, all of the site
encircling the sitei5(x,y) cannot be occupied by anothe
hexagon when the sitei is occupied by a hexagon. Therefor
we can regardki$s l% as an occupation number of the ha
hexagon.

In the partition function written in Eq.~3!, the summation
is taken over the ground state spin configurations. If we
gard the functionki$s l% of the spin configuration$s l% as a
variableki , the partition function is rewritten as a summ
tion over configurations of hard hexagons$ki% as follows:

Z5(
$ki %

expH ln~2S! (
iPL

ki J (
$s l %

d~E$s l%/L
21J/4!

3 )
iPL

d~ki2ki$s l%!, ~6!

where we define a functiond(x) as

d~x![H 1 ~x50!

0 ~xÞ0!.
~7!

The restriction for occupations of the nearest-neighbor si
namely the nearest-neighbor exclusion, is included in the
pression) iPLd(ki2ki$s l%) in Eq. ~6!. One can write it ex-
plicitly as follows:

Z5(
$ki %

expH ln~2S! (
iPL

ki J )̂
i , j &

~12kikj !

3(
$s l %

d~E$s l%/L
21J/4!)

iPL
d~ki2ki$s l%!. ~8!

Comparing this form with the usual hard hexagon mo
with only the nearest-neighbor exclusion@1#, one notices that
2S plays a role of activity. When the partition function
expressed in terms of the occupation number of the h
hexagons, we can see that there are many other restric

FIG. 2. Restriction between two hexagons on the near
neighbor sites. Thick solid lines encircling the sitei5(x,y) mean
right bonds which giveki$s l%51 corresponding to an occupatio
of this site by a hexagon. One cannot put another hexagon,
example, on (x11,y) or (x,y21) obviously.
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196 55YASUSHI HONDA AND TSUYOSHI HORIGUCHI
for configurations of hard hexagons than that for the near
neighbor sites. In order to embody some of these restricti
we introduce a magnetic hard hexagon in the following.

Let us define the ‘‘occupation number’’ of the magne
hard hexagonz i$s l% as follows:

z i$s l%[2s i )
jPC1~ i !

S 1212s is j D )
jPC2~ i !

S 1222s is j D
52s iki$s l%. ~9!

By introducing the functionz i$s l%, one can distinguish two
types of hard hexagons; one of them is given bys i511/2
and the other bys i521/2. They correspond toz i511 and
z i521, respectively; we call them an up magnetic ha
hexagon forz i511 and a down magnetic hard hexagon f
z i521. Regarding the occupation number of the magne
hard hexagon as a variable similar to that in the usual h
hexagon, the partition function~8! can be rewritten by a sum
over configurations of magnetic hard hexagons$z i% as fol-
lows:

Z5(
$z i %

expH ln~2S! (
iPL

uz i uJ )̂
i , j &

~12uz i uuz j u!

3(
$s l %

d~E$s l%/L
21J/4!)

iPL
d~z i2z i$s l%!. ~10!

In this description, the factor) iPLd(z i2z i$s l%) gives extra
exclusion conditions as for configurations of magnetic h
hexagons other than the nearest-neighbor exclusion. Nam
the magnetic hard hexagons have in general next-nea
neighbor exclusion, third-nearest-neighbor exclusion, and
on, in addition to the nearest-neighbor exclusion.

Let us assume that a sitei5(x,y) is occupied by an up
magnetic hard hexagon withz (x,y)511 as shown in Fig. 3.
Since two sites (x11,y) and (x,y21) at the boundary be
tween two hexagons located at (x,y) and (x11,y21) are
connected by a right bond withs (x11,y)521/2 and
s (x,y21)511/2, an up magnetic hard hexagon wi
z (x11,y21)511 on the site at (x11,y21) can exist with
that with z (x,y)51. However, following the definition of the

FIG. 3. Restriction between two magnetic hard hexagons on
next-nearest-neighbor sites. A magnetic hard hexagonz i511 oc-
cupies the sitei5(x,y), and therefore a magnetic hard hexag
z i 8511 can occupy the sitei 85(x11,y21), butz i 8521 cannot.
t-
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magnetic hard hexagon defined by Eq.~9!, the site at
(x11,y21) cannot be occupied by a down magnetic ha
hexagon withz (x11,y21)521. The other five next-neares
neighbor sites of (x,y) are in a similar situation. Thus we
realize that there is a restriction between two magnetic h
hexagons on the next-nearest-neighbor sites.

We notice that there is another restriction due to the d
nition of magnetic hard hexagon as explained in Fig. 4. A
sume that a site at (x,y) is occupied by an up magnetic har
hexagon. When we put a magnetic hard hexagon at the
(x12,y), for example, this magnetic hard hexagon is in co
tact with the magnetic hard hexagon at (x,y) on the site
(x11,y). Sincez (x,y)511, the value of spin at (x11,y) is
21/2. When the magnetic hard hexagon at (x12,y) has
z (x12,y)51, the bond between sites (x11,y) and (x12,y) is
not satisfied and hence the magnetic hard hexagons a
site (x,y) and (x12,y) are not compatible. On the othe
hand, the magnetic hard hexagon withz (x12,y)521 is com-
patible with that with z (x,y)511. Other third-nearest-
neighbor sites are in the same situation as that of the
(x12,y). Thus we have the restriction that a magnetic ha
hexagon located at the third-nearest-neighbor sites,l , of an
occupied sitei , z i , has to have the reverse sign of that
z i ; z l52sgn(z i).

We have explained three kinds of restrictions for config
rations of magnetic hard hexagons. Although they origina
stem from a definition of the magnetic hard hexagon a
function of spin configurations defined in Eq.~9!, we can
write them explicitly in terms of$z i% as follows:

R$z l%[)̂
i , j &

~12uz i uuz j u! )
^ i ,k&8

1
2 ~11z izk! )

^ i ,l &9

1
2 ~12z iz l !,

~11!

where^ i ,k&8 and ^ i ,l &9 mean the next-nearest-neighbor a
the third-nearest-neighbor pairs, respectively. In theD model
for which its partition function is given by Eq.~10!, there are
many other restrictions than those two-body exclusions m
tioned above. It is expected that those two-body exclusi
give an important effect for a large value of the activity a
hence the magnetic hard hexagons condense and mak
ordered phase for large values of activity; the large value
the activity corresponds to a large value of the spin.

We now propose a magnetic hard hexagon model wh
has only three kinds of two-body exclusions and we inve
gate a critical behavior of the magnetic hard hexagon mo
the partition function of the model is described as follows

e

FIG. 4. Restriction between two magnetic hexagons on th
nearest-neighbor sites.
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55 197CRITICAL PHASE OF A MAGNETIC HARD HEXAGON . . .
ZRMHH5(
$z l %

expH ln~2S! (
iPL

uz i uJR$z l%, ~12!

whereR$z l% is the restriction defined in Eq.~11!; this is
equivalent to that given by Eq.~1!. Although the usual hard
hexagon model with only the nearest-neighbor exclusion
solved exactly, it seems difficult to obtain an exact solut
for the present model. We therefore carry out Monte Ca
~MC! simulations for the model.

III. RESULTS FROM MONTE CARLO SIMULATION
AND DISCUSSIONS

We perform MC simulations at a finite temperature giv
by T51/ln(2S) with a unit of the Boltzmann constan
kB51. We used the Metropolis dynamics to update confi
rations of the magnetic hard hexagon in the MC simulatio
A finite size scaling method@6,9–12# is used to estimate a
critical indexh which describes a decay of correlation fun
tions between hexagons separated by a long distance.
indexh is determined from

Az[
1

L2 K S (
iPA

z i D 21S (
jPB

z j D 21S (
kPC

zkD 2L }L22h,

~13!

whereA, B, andC mean three kinds of sublattice of th
triangular lattice. We need two finite lattices at least to obt
the indexh from this relation as follows:

h~Li11!522
ln$Az~Li11!/Az~Li !%

ln~Li11 /Li !
. ~14!

In the present study, we setL1 ,L2 , . . . ,L6 equal to 24, 36,
48, 60, 90, 120, respectively, in this order. This method
based on the assumption that a system is in a critical ph
If the system is in the disordered phase,h estimated by this
method would appear to be 2. This value does not mean
the system is in a critical phase with the indexh52 but in
the disordered phase. On the other hand, if the system
an ordered phase, it should be zero.

In the present MC simulations, we used more than5

MC step per site for each system size. Figure 5 shows res
of size dependences of critical indexh for z51, 2, 3, and
3.5. We observed thath approaches 2 in the thermodynam
limit for these values of activity. These results mean that
systems with these values of activity are in the disorde
phase. For a small value of the activity, the density of m
netic hard hexagons is low and hence there are many la
sites unoccupied by a magnetic hard hexagon.

In Figs. 6 and 7, size dependences of the critical ind
h are shown for z54, 5, 5.5, 6, 6.5, and 7. Fo
zc1<z<zc2, the values ofh take finite values in the thermo
dynamic limit where 3.5,zc1<4 and 6<zc2,6.5. Since the
values ofh are obviously less than 2 and actually less th
1/2, the systems with these values of activity are in a criti
phase. In contrast to the case withz,zc1, two-body restric-
tions considered in our model play a role of providing
critical phase forzc1<z<zc2. For z56.5 and 7, we found
that the value ofh becomes zero in the thermodynamic lim
These results suggest an appearance of ordered pha
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z5zc2. From the relation of the present model with the sp
S Ising model on the ATL, we havez52S and hence
Sc152 andSc253. Note that the discrete value of activity
namely, the value of spin whereh becomes zero is very
close to that in the original spin system;Sc253 @6#. This
agreement, we think, is due to a dominant role of the tw
body restrictions in the region of large activity, which give
high density of magnetic hard hexagons.

In Fig. 8, we show a comparison of phase diagrams
the usual hard hexagon model, the magnetic hard hexa
model with two-body restrictions, and the spin-S Ising model
on the ATL. The usual hard hexagon model with only t
nearest-neighbor exclusion has two phases, that is, the d
dered phase and the ordered phase. There is no critical p
in the usual hard hexagon model. On the other hand,
spin-S Ising model on the ATL, which is equivalent to
magnetic hard hexagon model with many restrictions, has
critical phase and the ordered phase. There is no disord

FIG. 5. Size dependences of critical indexh for z51, 2, and 3.
The values ofh become 2 in the thermodynamic limit. This mea
that the system is in the disordered phase.

FIG. 6. Size dependences of critical indexh for z54, 5, and
5.5. The values ofh apparently become finite less than 1/2 in t
thermodynamic limit. These results mean the systems withz54, 5,
and 5.5 are in a critical phase.
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198 55YASUSHI HONDA AND TSUYOSHI HORIGUCHI
phase in the original spin-S Ising model. Our model investi
gated in the present paper has three phases, that is, the
ordered phase, the critical phase, and the ordered phase
ground state degeneracy is sixfold. Hence we expect that
model belongs to the same universality class as that of
six-state clock model.

IV. CONCLUSIONS

We have proposed a magnetic hard hexagon model
two-body exclusions. We have shown a relation of the mo
and the spin-S Ising model on the antiferromagnetic triang
lar lattice. The phase diagram of the model has been in
tigated by evaluating the critical exponenth by means of
Monte Carlo simulations. It turned out that the model h
three phases, that is to say, the disordered phase forz,zc1,
the critical phase forzc1<z<zc2, and the ordered phase fo
z.zc2, where 3.5,zc1<4 and 6<zc2,6.5. We notice that

FIG. 7. Size dependences of critical indexh for z56, 6.5, and
7. For z56, the value ofh becomes finite in the thermodynam
limit. On the other hand, forz56.5,7 the value ofh becomes zero,
which corresponds to an ordered phase.
cs
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an upper critical valueSc2 for the critical phase in the mode
is the same as the critical value of spin in the original sp
S Ising model.

Although the two-body restrictions considered in o
model are not enough when they are compared to those
cluded in the original spin-S system, namely theD model,
we saw they are enough to provide a critical phase, wh
does not exist in the usual hard hexagon model. We e
mated in the present paper only the indexh to clarify the
phase diagram of our model. Calculations of the other cr
cal indices and estimations of more definite values ofzc1 and
zc2 are left as a future problem to understand the criti
property of our model.
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FIG. 8. ~a! Phase diagram of the usual hard hexagon model w
only the nearest-neighbor exclusion. There is no critical phase~b!
Phase diagram of our model investigated in the present paper. T
appear a critical phase between the disordered phase and th
dered phase.~c! Phase diagram of the spin-S Ising model on the
ATL. There is no disordered phase.
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