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Critical phase of a magnetic hard hexagon model on a triangular lattice
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We introduce a magnetic hard hexagon model with two-body restrictions for configurations of hard hexa-
gons and investigate its critical behavior by using Monte Carlo simulations and a finite size scaling method for
discrete values of activity. It turns out that the restrictions bring about a critical phase which the usual hard
hexagon model does not have. An upper and a lower critical value of the discrete activity for the critical phase
of the proposed model are estimated as 4 and 6, respecti@dl9§63-651X97)04601-1

PACS numbd(s): 64.60—i, 75.10—~b

I. INTRODUCTION not have any extra restrictions but only the nearest-neighbor
repulsion, theA model is critical for 1/2S<3 [6].

Critical behavior of the hard hexagon model on a triangu- The purpose of the present paper is to introduce a hard
lar lattice is well known through its exact solution by using hexagon model; we call it a magnetic hard hexagon model.
the corner transfer matrikl]. Below a critical value of the The magnetic hard hexagon model with up to the third-
activity z~ 11, the system is in the disordered phase. Therenearest-neighbor repulsions is investigated by Monte Carlo
fore, a correlation function between hard hexagons decayamulations and a finite size scaling for evaluatiompfwe
exponentially ther¢2]. Above the critical value of the activ- find that the hard hexagon model has an ordered phase, a
ity, the hexagons on the lattice condense and make an ogtritical phase, and the disordered phase. We discuss a rela-
dered configuration. The degeneracy of the ordered configuion of the hard hexagon model with the sg@rising model
ration is triplefold and the universality class of the critical on the antiferromagnetic triangular lattice.
point is the same as that of the three-state Potts njddg|l In Sec. Il, we introduce the magnetic hard hexagon model
The fact that the hexagons are hard means that there isveith exclusions up to the third-nearest-neighbor sites with
restriction between the nearest-neighbor sites, such that amglation to the spirs Ising model on the triangular lattice. In
two hexagons cannot occupy two neighboring sites simultaSec. Ill, we show our results about a phase diagram of our
neously on the triangular lattice. This property of the hardmodel and discuss these results. Concluding remarks are
hexagon model can be regarded as the nearest-neighbor egiven in Sec. IV.
clusion. Adding to the nearest-neighbor exclusion, a next-
nearest-neighbor exclusion causes fourfold degeneracy in the
ground state. Todo and Suzuld] claimed that the hard Il. MAGNETIC HARD HEXAGON MODEL
hexagon model with the next-nearest-neighbor exclusion be- WITH RESTRICTIONS

longs to the same universality class as that of the four-state Let us introduce a magnetic hard hexagon model which is

Pﬁtts modell by mleans of tr:_e numerical study hby dusmé; tE‘f'elated to a representation of the ground state degeneracy for
P efnomelnp ogical renormalization group method and they,q spinS Ising model on an antiferromagnetic triangular
conformal invariance. lattice (ATL). The “occupation number” of magnetic hard

_Recently, it was f(_)und that an antiferromagnetic _sﬁin- hexagons is denoted Ly at a sitei on the triangular lattice
Ising model on the triangular lattice has a relation with theA. ¢, takes on{—1,0,+ 1}. If the sitei is occupied by an
1 | 1Yy .

hard hexagon model with many restrictions for configura-. - ” “ ;

tio_ns of hexagon$6]. The phase trgnsition as a functio_n of hlé[:(an;gg,r}? ttlﬁer:]awehizi%%n thzr; Z i 1d3\;lvg in f g ?:;I;:ef:lrd
S in the ground state of the spB{sing model was studied tivelv. If the sitei is emptv. then —0

by using a mapping from the ground state degeneracy of the’ -  empty, then we sef; =0. :

y 9 pping 9 >, ge yOortne Tne ground partition function of the system is written as
system at zero temperature to a partition function of a spin-
1/2 system at a pseudotemperatif@]; the mapped system
is called aA model. The originalS=1/2 Ising model was sN g
exactly solved and it is well known that the system is critical Zrwn= 2, 2714 H arairsly
with »=1/2 at zero temperaturg7,8]. Nagai et al. [9] tal i
showed that the critical index; decreases from 1/2 for L L
S=1/2 when the spir§ increases fronS=1/2. It has been X H 2 (1444w H 2(1=&G4), @
clarified thatz becomes zero &= 7/2 discontinuously6]. (k0 {@h
This behavior ofy suggests an appearance of a partial long-
range order for the system wie7/2; it was shown explic- where N=|A|, and the products withi,j), (i,k)’, and
itly for S= [10]. We remind the reader that tdemodel is  (i,l)” are taken over the nearest-neighbor pairs of sites, the
the hard hexagon model with many kinds of restrictiffls ~ next-nearest-neighbor pairs of sites, and third-nearest-
In contrast with the usual hard hexagon model which doeseighbor pairs of sites, respectively. We explain below a
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FIG. 1. Set of sitesC;(i) andC,(i), encircling the sité. These FIG. 2. Restriction between two hexagons on the nearest-
appear in Eq(5) for evaluation of the occupation numbef o} of neighbor sites. Thick solid lines encircling the site(x,y) mean
a hexagon. right bonds which give{o } =1 corresponding to an occupation

of this site by a hexagon. One cannot put another hexagon, for

relation of Zgyy With the ground state degeneracy of the &X@MPIe, onX+1y) or (x,y—1) obviously.

spin-S Ising model on the ATL. In this relation, the activity
denoted byz is equal to 5.

The Hamiltonian of the spii%Ising model on the ATL is
written as

—1/4 and hence the value &, 1,){o} is 0. One cannot
put another hexagon on the site,y—1) because the value
T (x,y)T(xy—1) IS +1/4. For the same reasons as those for the
sites k+1y) and (x,y—1) explained above, all of the sites
encircling the site =(x,y) cannot be occupied by another
H{S}=JZ SS, 2 hexagon when the siieis occupied by a hexagon. Therefore,
(i.J) we can regark;{o} as an occupation number of the hard
whereJ (>0) is the interaction constant between nearest'€xagon. _ o _
neighbor sites denoted bgi,j) and S, is a spin variable In the partition function written in EqS)., the summation
which takes a value ofi—S,—S+1,... S—18}. It has is taken over t_he ground state spin conflgura_ltmns. If we re-
been shown that the ground state degeneracy of this systed"d the functiorki{o} of the spin configuratiorjo;} as a
is equivalent to a partition function of a spin-1/2 Ising model V&riablek; , the partition function is rewritten as a summa-

as follows[5,6]; tion over configurations of hard hexagofils} as follows:
— . 2
S eqneskien,  © 2% eqnesT k]S aEiao

{o)|E{o}/L2=— 214}

where the summation for spin configuratiops,} is taken X1 s(ki—ki{a}), (6)
over the ground-state configurations of the spin-1/2 Ising rehd
model on the ATL witho e {—1/2,+ 1/2}: the energy of the

h defi functiod
system,E{c}/L?, has to be—J/4. We recall that this is the where we define a functiod(x) as

partition function of theA model[5]. The linear size of the 1 (x=0)
system is denoted bly. K{o|} denotes the total number of 5(X)E[O (x£0) )

free spins and is expressed as follows:

The restriction for occupations of the nearest-neighbor sites,
K{o}= > ki{o}, (4)  namely the nearest-neighbor exclusion, is included in the ex-
ieA pressionl; . , 8(ki—k;{oy}) in Eq. (6). One can write it ex-
! L plicitly as follows:
ko= 11 (_+20'i0") 11 (—_ZUiU')y ©)
jeCyh 12 ey |2 ! z={;} expl In(2S) >, ki]H (1-kik;)
i le i,
where in Eq.(4) the summation is over the set of sites in the ' o
lattice A and in Eq.(5) C4(i) and C,(i) are sets of sites,
each of them composed of three sites encircling the site
i=(x,y) as shown in Fig. 1. When right bonds shown by
thick lines are arranged in such a way given in Fig. 2, theComparing this form with the usual hard hexagon model
value of the functiork;{o|} becomes 1; this means that a with only the nearest-neighbor exclusidt, one notices that
hexagon occupies the sites (x,y). In this situation, the site 2S plays a role of activity. When the partition function is
(x+1y) cannot be occupied by another hexagon, becausexpressed in terms of the occupation number of the hard
the value ofo(y o (x+1y) ON the bond X,y)—(x+1y) is  hexagons, we can see that there are many other restrictions

x{}‘,} 5(E{U|}/L2+J/4)l_[A s(ki—k{ol). (8
oy ie
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FIG. 4. Restriction between two magnetic hexagons on third-
nearest-neighbor sites.

FIG. 3. Restriction between two magnetic hard hexagons on thénagnetic hard hexagon defined by E@), the site at
next-nearest-neighbor sites. A magnetic hard hexagent+1 oc- (x+1y—1) cannot be occupied by a down magnetic hard
cupies the sitd =(x,y), and therefore a magnetic hard hexagonhexagon with{(,, 1y 1)=—1. The other five next-nearest-
¢i»=+1 can occupy the sité =(x+1y—1), but{;;=—1 cannot.  neighbor sites of X,y) are in a similar situation. Thus we

realize that there is a restriction between two magnetic hard
for configurations of hard hexagons than that for the neareshexagons on the next-nearest-neighbor sites.
neighbor sites. In order to embody some of these restrictions, We notice that there is another restriction due to the defi-
we introduce a magnetic hard hexagon in the following.  nition of magnetic hard hexagon as explained in Fig. 4. As-

Let us define the “occupation number” of the magnetic sume that a site ak(y) is occupied by an up magnetic hard

hard hexagord;{o} as follows: hexagon. When we put a magnetic hard hexagon at the site
L . (x+2)y), for example, this magnetic hard hexagon is in con-
Vo 2 o T, tact with the magnetic hard hexagon aty) on the site
5'{“'}_2"'1-};[1“) 2 +20'UJ>161;[2“) (2 20'01) (x+1y). Since{x, = +1, the value of spin at{+1y) is

—1/2. When the magnetic hard hexagon at-Q)y) has
=20ik{o}. 9 ¢124=1, the bond between sitex{ 1y) and x+2yy) is
) ) ) L not satisfied and hence the magnetic hard hexagons at the
By introducing the functiori;{o}, one can distinguish two gjte (x,y) and (x+2y) are not compatible. On the other
types of hard hexagons; one of them is givendyy + 1/2 hand, the magnetic hard hexagon Wi, ,,,=—1 is com-
and the other byr;=—1/2. They correspond tg=+1 and  patiple with that with Loy =+1. Other third-nearest-
¢i=—1, respectively; we call them an up magnetic hardnejghbor sites are in the same situation as that of the site
hexagon for;= +1 and a down magnetic hard hexagon fo_r(xjL 2)y). Thus we have the restriction that a magnetic hard
{i=—1. Regarding the occupation number of the magnetiexagon located at the third-nearest-neighbor sitesf an

hard hexagon as a variable similar to that in the usual har@ccypied site, ¢;, has to have the reverse sign of that of
hexagon, the partition functiof8) can be rewritten by a sum G GL=—sgn(@).

over configurations of magnetic hard hexagg¢gg as fol- We have explained three kinds of restrictions for configu-
lows: rations of magnetic hard hexagons. Although they originally
stem from a definition of the magnetic hard hexagon as a
7= ex In(2$)_2 ] H (1_|§i||§j|) functlon of spin ponﬂguraﬂons defined in Eq&)), we can
o i‘eA an write them explicitly in terms of £;} as follows:

X2y SEHLEH I L o= dhoh. A0 rigy=TT a-lallgh IT da+aa0 I 3 a-aa,
o ie i

(i.k)’ (i
11

In this description, the factdi; . , 8(;— ¢;i{oy}) gives extra v
exclusion conditions as for configurations of magnetic hardvhere(i,k)’ and(i,|)” mean the next-nearest-neighbor and
hexagons other than the nearest-neighbor exclusion. Namelghe third-nearest-neighbor pairs, respectively. InAh@odel
the magnetic hard hexagons have in general next-nearesbr which its partition function is given by Eq10), there are
neighbor exclusion, third-nearest-neighbor exclusion, and sgany other restrictions than those two-body exclusions men-
on, in addition to the nearest-neighbor exclusion. tioned above. It is expected that those two-body exclusions

Let us assume that a site=(x,y) is occupied by an up give an important effect for a large value of the activity and
magnetic hard hexagon witf}, ,y=+1 as shown in Fig. 3. hence the magnetic hard hexagons condense and make an
Since two sitesX+1,y) and ,y—1) at the boundary be- ordered phase for large values of activity; the large value of
tween two hexagons located at,y) and k+1y—1) are the activity corresponds to a large value of the spin.
connected by a right bond witho(,,q,)=—1/2 and We now propose a magnetic hard hexagon model which
oxy-1)=11/2, an up magnetic hard hexagon with has only three kinds of two-body exclusions and we investi-
{(x+1y-1)= +1 on the site atX+1y—1) can exist with gate a critical behavior of the magnetic hard hexagon model;
that with (, ,y=1. However, following the definition of the the partition function of the model is described as follows:
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Zrwi= % X In<28>EA|zi|}R{z|}. (12 ——— T
| ie =

where R{{;} is the restriction defined in Eq11); this is
equivalent to that given by Edql). Although the usual hard - ]
hexagon model with only the nearest-neighbor exclusion was
solved exactly, it seems difficult to obtain an exact solution

for the present model. We therefore carry out Monte Carlo &
(MC) simulations for the model.
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ll. RESULTS FROM MONTE CARLO SIMULATION &, . L4
AND DISCUSSIONS 5 * T s @ 4

We perform MC simulations at a finite temperature given
by T=1/In(29 with a unit of the Boltzmann constant 0 0.01 0.02 0.03
kg=1. We used the Metropolis dynamics to update configu- 1L
rations of the magnetic hard hexagon in the MC simulations. ) o
A finite size scaling methof6,9-17 is used to estimate a _ FIG. 5. Size dependences of critical indgxXor z=1, 2, and 3.
critical index » which describes a decay of correlation func- 'he values ofy become 2 in the thermodynamic limit. This means
tions between hexagons separated by a long distance. THE the system is in the disordered phase.
index 7 is determined from

1
A=12 2 gi E g
L ieA jeB

(=]

) z=2.,. From the relation of the present model with the spin-
> g) >oc|_2_77 S Ising model on the ATL, we haveg=2S and hence
r ok ’ S.1=2 andS.,=3. Note that the discrete value of activity,

(13 namely, the value of spin wherg becomes zero is very
close to that in the original spin syster§;,=3 [6]. This
where A, B, and C mean three kinds of sublattice of the agreement, we think, is due to a dominant role of the two-
triangular lattice. We need two finite lattices at least to obtairbody restrictions in the region of large activity, which gives

2

2
+ +

the index#n from this relation as follows: high density of magnetic hard hexagons.
In Fig. 8, we show a comparison of phase diagrams for
(Li)=2— IN{A,(Li+1)/A/(Li)} (14  the usual hard hexagon model, the magnetic hard hexagon
ML+ In(Lj4q/L;) model with two-body restrictions, and the s@rising model

on the ATL. The usual hard hexagon model with only the
In the present study, we skt,L,, ... Le equal to 24, 36, nearest-neighbor exclusion has two phases, that is, the disor-
48, 60, 90, 120, respectively, in this order. This method isdered phase and the ordered phase. There is no critical phase
based on the assumption that a system is in a critical phasi the usual hard hexagon model. On the other hand, the
If the system is in the disordered phasegstimated by this  spinS Ising model on the ATL, which is equivalent to a
method would appear to be 2. This value does not mean thahagnetic hard hexagon model with many restrictions, has the
the system is in a critical phase with the indgx2 but in  critical phase and the ordered phase. There is no disordered
the disordered phase. On the other hand, if the system is in
an ordered phase, it should be zero.

In the present MC simulations, we used more thah 10 L L L B L B S B L R B B
MC step per site for each system size. Figure 5 shows results
of size dependences of critical indexfor z=1, 2, 3, and
3.5. We observed that approaches 2 in the thermodynamic
limit for these values of activity. These results mean that the
systems with these values of activity are in the disordered
phase. For a small value of the activity, the density of mag-
netic hard hexagons is low and hence there are many lattice
sites unoccupied by a magnetic hard hexagon.

In Figs. 6 and 7, size dependences of the critical index
n are shown forz=4, 5, 55, 6, 6.5 and 7. For
2.1 <2=<2Z.,, the values ofy take finite values in the thermo-
dynamic limit where 3.5z;;<4 and 6<z.,<6.5. Since the
values of% are obviously less than 2 and actually less than 0 0.01 0.02 © 0.03
1/2, the systems with these values of activity are in a critical 1/L
phase. In contrast to the case with z.;, two-body restric-

tions considered in our model play a role of providing a FiG. 6. Size dependences of critical indexfor z=4, 5, and
critical phase forzg;<z<z,. Forz=6.5 and 7, we found 55 The values of; apparently become finite less than 1/2 in the
that the value ofy becomes zero in the thermodynamic limit. thermodynamic limit. These results mean the systems zvitd, 5,
These results suggest an appearance of ordered phaseaatl 5.5 are in a critical phase.
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LI B B B N BN B B B N R R A B Disorder Order
A 7=6 g z=7 ! (a) : P Spin
04l ® 2z=6.5 - Sc~55
| ] Disorder Critical Order
(b) : } » Spin

SC1~2 Scz“‘ 3

n=1/2 Critical Order
(0 : » Spin
S=1/2 Sc~3

0 0.01 0.02 0.03 FIG. 8. (a) Phase diagram of the usual hard hexagon model with
1L only the nearest-neighbor exclusion. There is no critical ph@se.
Phase diagram of our model investigated in the present paper. There
FIG. 7. Size dependences of critical indgxfor z=6, 6.5, and  appear a critical phase between the disordered phase and the or-
7. Forz=6, the value ofy becomes finite in the thermodynamic dered phase(c) Phase diagram of the sp&ising model on the
limit. On the other hand, for=6.5,7 the value ofy becomes zero, ATL. There is no disordered phase.
which corresponds to an ordered phase.
an upper critical valu&,, for the critical phase in the model
phase in the original spiB-Ising model. Our model investi- is the same as the critical value of spin in the original spin-
gated in the present paper has three phases, that is, the d&ising model.
ordered phase, the critical phase, and the ordered phase. TheAlthough the two-body restrictions considered in our
ground state degeneracy is sixfold. Hence we expect that oumodel are not enough when they are compared to those in-
model belongs to the same universality class as that of theluded in the original spii® system, namely th& model,

six-state clock model. we saw they are enough to provide a critical phase, which
does not exist in the usual hard hexagon model. We esti-
V. CONCLUSIONS mated in the present paper only the indexo clarify the

hase diagram of our model. Calculations of the other criti-

We have proposed a magnetic hard hexagon model Witgal indices and estimations of more definite values,gfand
two-body exclusions. We have shown a relation of the mode} , are left as a future problem to understand the critical

and the spirB Ising model on the antiferromagnetic triangu- property of our model.
lar lattice. The phase diagram of the model has been inves-
tigated by evaluating the critical exponentby means of
Monte Carlo simulations. It turned out that the model has
three phases, that is to say, the disordered phase<ag, We would like to thank Dr. A. Lipowski for valuable
the critical phase for;,<z=<z.,, and the ordered phase for discussions. This work was partly supported by the Com-
z>7.,, Where 3.5Xz.;<4 and 6<z,,<6.5. We notice that puter Center, Tohoku University.
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